

PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE

- Phasic development
 - embryonic growth
 - juvenility
 - transition stage
 - maturity
 - senescence
 - Death

- The shoot apical meristem (and therefore plants) undergo three distinct phases:
- Juvenile
- Adult vegetative
- Adult reproductive

Meristems in the juvenile phase have no ability to produce reproductive structures (cones or flowers) so are described as having no **competence**. Adult meristems are competent because they can now produce reproductive structures (ie. will respond to stimuli which trigger this), but the actual production of these will depend on environmental stimuli.

PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE

- Juvenility
 - terminated by flowering and fruiting
 - may be extensive in certain forest species
- Maturity
 - loss or reduction in ability of cuttings to form adventitious roots
- Physiologically related
 - lower part of plant may be oldest chronologically, yet be youngest physiologically (e.g. some woody plants)
 - top part of plant may be youngest in days, yet develop into the part that matures and bears flowers and fruit

AGING AND SENESCENCE

- Life spans among plants differ greatly
 - range from few months to thousands of years
 - e.g. bristlecone pine (over 4000 years old)
 - e.g. California redwoods (over 3000 years old)
 - clones should be able to exist indefinately
- Senescence
 - a physiological aging process in which tissues in an organism deteriorate and finally die
 - considered to be terminal, irreversible
 - can be postponed by removing flowers before seeds start to form

Phases

- Flower induction and initiation
- Flower differentiation and development
- Pollination
- Fertilization
- Fruit set and seed formation
- Growth and maturation of fruit and seed
- Fruit senescence

Flower induction and initiation

What causes a plant to flower?

- Daylength (photoperiod)
- Low temperatures (vernalization)
- Neither

Photoperiodism

Short-day plants (long-night; need darkness)

Long-day plants (need sufficient light)

Day-neutral plants (flowering unaffected by period)

Change from vegetative to reproductive

- Low temperature induction
- Vernalization
 - Any temperature treatment that induces or promotes flowering
 - First observed in winter wheat; many biennials
 - Temperature and exposure varies among species
 - Note difference/relationship to dormancy